

Year 12 Further Maths Curriculum Overview

Rationale: The Year 12 curriculum is designed to extend student's knowledge above and beyond A Level Mathematics, giving a firm grounding in Calculus, Statistics and Decision Mathematics. New concepts on topics including series, matrices, complex numbers and vectors ensure a deep understanding of the interconnectivity of mathematics, with proof showing the intellectual rigour underpinning these concepts. These will then form a solid foundation for future progress in year 13 and preparation for lifelong learning in University and beyond.

Term/Length	Outline	Assessment/Teacher Feedback	Homework and Literacy resources
of Time		Opportunities	
Autumn Term	Pure Mathematics	Assessments are spread out	Minimum homework expectation - to be set on G4S
3 lessons per	The course extends students learning	throughout the year. Students	One piece of home learning lasting roughly an hour per
week for	from A level maths and is taught	will complete 2 module tests	lesson. These are self-marked, but teachers will check that
approximately	concurrently. Students are expected	approximately every 8 weeks, (1	they have been completed and that pupils do understand
15 weeks.	to digest new and complex ideas and	from each side of the course),	the content, and know how to correct any errors.
	be able to apply them in a range of	covering all content learnt so far.	
	different contexts. Use of proof by	Students will also sit 2 summative	FAR (Feedback, Action, Response) tasks are set roughly
	induction will be an essential tool for	tests, one in February and the	once per unit (twice for longer units) covering key
	understanding why mathematical	other in June to measure overall	concepts. These contain 20-30 marks worth of exam style
	ideas and formulae work.	progress.	questions on the topics, including a question which
			requires pupils to explain or critique a problem solving
Approx 3-4	Complex Numbers		process. These are marked by teachers, with time given in
weeks	The course begins with complex		a later lesson for pupils to refine their work and act on
	numbers, building on the algebra,		feedback.
	number and graphical skills learnt in		
	Year 11. This topic will look at		
	imaginary and real numbers, and the		
	algebraic manipulation involved in		
	their use. Students will know how to		
	draw and find general solutions and		
	regions using Argand diagrams. They	Following completion of Complex	Links to aid revision:
	will also see how complex numbers	Numbers a Module test covering	Complex Numbers Module 1
	can be written in several ways, such as	Complex numbers from Further	Argand Diagrams Module 2
	the modulus-argument form.	Mathematics 1 will take place.	Students are expected to fully complete every question
			from the Chapter Exercises in the textbook.

Approx 2-3	Roots of Polynomials		Links to aid revision:
weeks	When considering quadratics, cubics		Roots of Polynomials
	and general polynomials, what can we		Students are expected to fully complete every question
	discover about their roots without		from the Chapter Exercises in the textbook.
	actually solving the polynomial? This		
	module covers the skills needed to be		
	able to manipulate the roots of		
	quadratic, cubic and quartic equations		
	and see their properties. This module	Module test Covering Roots of	
	also links and builds from complex	Polynomials from Further	
	roots seen from the previous topic.	Mathematics 1. Feedback and	
		analysis given.	
Approx 5	Matrices		Links to aid revision:
weeks	Building on two way tables and vectors		<u>Matrices</u>
	from GCSE, this topic gives a thorough		Linear Transformations
	base of the use of matrices in solving		Students are expected to fully complete every question
	problems and their properties. This		from the Chapter Exercises in the textbook.
	unit will cover the concept of a matrix		
	and performing matrix arithmetic,		
	including how to find the inverse of a		
	matrix up to a 3x3 form. This will lead	Module test Covering Matrices	Literacy Resources
	to manipulating matrices on a graph	and Transformations in Further	Students are strongly encouraged to read around the subject. Potential
	and how matrices transform shapes in	Mathematics 1. Feedback and	books to supplement learning include: Fermat's Last Theorem by Simon Singh
	both 2 and 3 dimensions.	analysis given.	Fermut's Lust mediem by simon singn
Autumn Term	Applied Mathematics – Decision	As with Core, the Applied course	For Autumn Term Applied
2 lessons per	Mathematics and Further Statistics	also has assessments spread out	For Automin Term Applied
week for	The Further maths content also covers	throughout the year.	
approximately	2 applied maths courses – NLS covers		
15 weeks.	Decision Maths 1 and Further Stats 1.		
	These give an excellent base to really		
	stretch students skills in logical		
	reasoning and algorithms as well as a		

	deeper understanding of the different statistical distributions and how they relate to real life problems. These		
	lessons are taught in parallel with the		
	Pure maths side of the course.		
Approx 3-4	Decision – Algorithms and Graphs		Links to aid revision:
weeks	This first module explores the concept		Algorithms and Graphs
	of algorithms, sorting and flow charts,		Graphs and Networks
	giving a good basis using simple		Students are expected to fully complete every question
	examples such as the bubble sort and		from the Chapter Exercises in the textbook.
	bin packing algorithms.		
Approx 304	Decision - Algorithms on Graphs		Links to aid revision:
weeks	Now exploring algorithms in more		Algorithms on graphs
	depth and how they can be displayed		Students are expected to fully complete every question
	as a graph – this module covers		from the Chapter Exercises in the textbook.
	Kruskal, Prim and Dijkstra's algorithms.		
	This will lead into finding the most		
	efficient paths for completion.		
Approx 2	Statistics –		Links to aid revision:
weeks	Discrete Random Variables		Discrete Random Variables
	Beginning with discrete random		Students are expected to fully complete every question
	variables, how these work and how to		from the Chapter Exercises in the textbook.
	manipulate them, including finding the	Module test covering DRV's,	
	variance and expected values using	Algorithms and Graphs from	
	real life examples.	Further Stats and Decision Maths.	
		Feedback and analysis given.	
Approx 3	The Poisson Distribution		Links to aid revision:
weeks	One of several new distributions –		Poisson Distribution
	where we see the Poisson distribution,		Students are expected to fully complete every question
	how to model, and how to find the		from the Chapter Exercises in the textbook.

Approx 3 weeks	variance and mean. This also links to Statistics in the normal A level course, and how the Binomial distribution and the Poisson Distribution are related. Decision - Critical Path Analysis Returning to Decision – seeing how a task cannot be run efficiently without considering the critical path. This then leads to Gantt charts showing the fastest possible completion times using the most efficient number of workers.	Module test covering the Poisson Distribution and Algorithms on Graphs. Feedback and analysis given.	Links to aid revision: <u>Critical Path Analysis</u> Students are expected to fully complete every question from the Chapter Exercises in the textbook.
Spring Term 3 lessons per week for approximately 13 weeks.	Pure Mathematics Volumes of Revolution Building from A level pure - this topic will show how to find the volume of a curve rotated about either the x or y axes and how this relates to real life shapes and their volumes.		Links to aid revision: <u>Volumes of Revolution</u> Students are expected to fully complete every question from the Chapter Exercises in the textbook.
Approx 2 weeks	Series This topic covers understanding of the sigma notation and how to find sums of natural numbers, square, cubes and their variants. Recognising patterns and next steps will be vital here		Links to aid revision: Series Students are expected to fully complete every question from the Chapter Exercises in the textbook.
Approx 2 weeks	Proof by Induction One of the most important aspects of maths - a rigorous procedure showing how mathematics is based on solid foundations and how to prove various		Links to aid revision: <u>Proof by Induction</u> Students are expected to fully complete every question from the Chapter Exercises in the textbook.

	mathematics concepts using proof by induction. This links together all previous topics and will be used repeatedly throughout the course, so clear understanding and being able to apply this concept will be vital moveing forward in this course.	Module test covering Volumes of revolution, series and proof by induction from Further Mathematics 1. Feedback and analysis given.	
Approx 2 weeks	Spring test revision Time will be spent preparing students with exam style questions to prepare for the first summative test in the spring term.	Spring mock exam covering all units taught so far in Year 12, plus feedback. Feedback and analysis given.	Links to aid revision: Past paper Questions Links to previous topics
Approx 6 weeks	Vectors A far deeper understanding of vectors will be gained in this topic, building considerably on the normal A level maths course and what was seen in GCSE maths. Topics will include both 2d and 3d vectors, plane geometry, intersections of planes and lines; using the vector equation of a plane and a line. A thorough and rigorous	Module Test covering Vectors	Links to aid revision: Vectors Students are expected to fully complete every question from the Chapter Exercises in the textbook. Literacy Resources Students are strongly encouraged to read around the subject. Potential books to supplement learning include: The Music of the Drimes by Marsus Du Souton.
	understanding will be needed and this topic can be very challenging.	from Further Mathematics 1. Feedback and analysis given.	The Music of the Primes by Marcus Du Sautoy
Spring Term 2 lessons per week for	Applied Mathematics – Decision Mathematics and Further Statistics		For Spring Term Applied:
	Decision – Linear Programming		Links to aid revision:

approximately	Using linear programming and graphs		Linear Programming
13 weeks.	it is possible to find the optimal point		Students are expected to fully complete every question
	when solving problems. This topic		from the Chapter Exercises in the textbook.
Approx 2	covers these ideas thoroughly and how		
weeks	they relate to real life problems		
			Links to aid revision:
	Statistics –		Hypothesis testing
Approx 2-3	Hypothesis testing with Binomial And		Students are expected to fully complete every question
weeks	Poisson		from the Chapter Exercises in the textbook.
	One of the key aspects of distributions		
	is knowing how to perform Hypothesis		
	tests accurately for real life problems.	Module test covering Linear	
	This topic covers this for Binomial and	Programming, Poisson, Binomial	
	Poisson, building on the previous	and Hypothesis Testing. Feedback	
	statistics chapter.	and analysis given.	
			Links to aid revision:
	Statistics - Chi-Squared		<u>Chi-Squared</u>
Approx 3-4	Students should understand degrees of		Students are expected to fully complete every question
weeks	freedom and how to use the chi-		from the Chapter Exercises in the textbook.
	squared family of distributions, as well		
	as hypothesis testing and goodness of		
	fit tests, relating to real life examples.		
Summer	Pure Mathematics		
Term			
3 lessons per	Preparation for summer progression	Summer Progression exam	Links to aid revision:
week for	exams	covering all aspects of AS Further	Past paper Questions
approximately	The year 12 course is now complete	Mathematics. Feedback and	Links to previous topics
11 weeks.	and time will be spent consolidating	analysis given. Feedback and	
	understanding and the use of past	analysis given.	
Approx 3-4	papers to ensure mastery of all exam		
weeks	style questions. We will go over key		

	topics and ensure students exam preparedness is as good as possible. Following the summer progression exams, it is necessary to teach Year 13 A Level maths material to ensure students can fully access all Year 13 Further Maths materials. These 3 topics are:		Links to aid revision: <u>Past paper Questions</u> <u>Links to previous topics</u>
Approx 3 weeks	Trigonometry All aspects of trigonometry is needed, including all formulae, manipulation, proof and how they can relate to real life problems	In class assessment covering A level maths content on Trigonometry, Differentiation and Integration with feedback given.	Links to aid revision: <u>Trigonometry</u> – all slides <u>Extra exam questions on Trigonometry</u>
Approx 3 weeks	Differentiation Calculus will cover all aspects of differentiation, including the product rule, quotient rule and applications of differentiation and the use of parametric equations.		Links to aid revision: <u>Differentiation</u> – all slides <u>Extra exam questions on Differentiation</u>
Approx 3 weeks	Integration Finally, integration will be needed. This will include hwo to integrate by substitution and by parts and ensure all students can quickly see how to integrate using reverse differentiation and apply this to parametric equations, area under the curve and real life problem solving.		Links to aid revision: Integration – all slides Extra exam questions on Integration

Summer	Applied Mathematics – Decision		For Summer Term Applied:
Term	Mathematics and Further Statistics		
2 lessons per week for			
approximately	Decision And Further Statistics	Module test on Chi-squared.	Links to aid revision:
11 weeks.	The Chi Squared topic will be		<u>Chi-Squared</u>
	completed early in the summer term.		Students are expected to fully complete every question
Approx 2-3 weeks			from the Chapter Exercises in the textbook.
	Exam Practice and Consolidation	Summer progression exam	Links to aid revision:
	The year 12 course is now complete	covering major aspects of AS	Past paper Questions
Approx 3	and time will be spent consolidating	Further Statistics and Decision	Links to previous topics
weeks, then	understanding and the use of past	Mathematics.	
consolidation	papers to ensure mastery of all exam		Literacy Resources
to end of	style questions. We will go over key		Students are strongly encouraged to read around the subject. Potential
term	topics and ensure students exam		books to supplement learning include: The Code Book by Simon Singh
	preparedness is as good as possible.		