

Year 13 Biology Curriculum Overview

Rationale: The Year 13 Biology curriculum is designed to further explore and investigate Biology by building a mind-set that allows skills to be continuously developed. Students will study and experience modules such as, Energy transfers, Response to stimuli, Population genetics and Gene expression. In doing so, pupils will develop their practical and investigative skills.

Term/Length of Time	Outline	Assessment/Teacher Feedback Opportunities	Homework and Literacy resources
Autumn 27 lessons (including assessment and responding to feedback lessons)	Energy transfers in and between organisms Students will build on their knowledge and skills about photosynthesis, respiration and energy in ecosystems from Y8 and GCSE Biology to learn about the importance of energy transfers. Students will learn that: Life depends on continuous transfers of energy. In photosynthesis, light is absorbed by chlorophyll and this is linked to the production of ATP. In respiration, various substances are used as respiratory substrates. The hydrolysis of these respiratory substrates is linked to the production of ATP. In both respiration and photosynthesis, ATP production occurs when protons diffuse down an electrochemical gradient through molecules of the enzyme ATP synthase, embedded in the membranes of cellular organelles. The process of photosynthesis is common in all photoautotrophic organisms and the process of respiration is common in all organisms, providing indirect evidence for evolution.	Photosynthesis, respiration and energy in ecosystems end of topic assessment in the style of exam questions Written and verbal feedback given throughout module through in-class activities and homework.	 Homework is set weekly and contains a mixture of recall exam-style questions as well as more detailed application based exam style questions. All homework is reviewed with at least one detailed FAR (Feedback, Action, Response) marked by the teacher approximately once every 2 weeks Optional homework tasks and Literacy resources: SoL on science shared area, including PowerPoints, details of practical investigations, worksheets, revision resources, a range of AFL (assessment for learning) activities, research based tasks, model answers, short answer questions, exam questions, mark schemes, examiner's reports as well as homeworks. Biology offers many opportunities to develop and extend students' literacy skills. There is a large amount of new, subject-specific vocabulary, and so each unit includes a PLC (Personnel Learning checklist) which students will engage with throughout the unit. Students will use texts to find out information for themselves, using the functional layout of such texts, including index, contents and glossary sections of text books used in class, and also

In communities, the biological molecules produced by photosynthesis are consumed by other organisms, including animals, bacteria and fungi. Some of these are used as respiratory substrates by these consumers.

Photosynthesis and respiration are not 100% efficient. The transfer of biomass and its stored chemical energy in a community from one organism to a consumer is also not 100% efficient.

Skills:

32 lessons

(including

•	Use of chromatography to investigate the
	pigments isolated from leaves of different
	plants, eg, leaves from shade-tolerant and
	shade-intolerant plants or leaves of different
	colours.

- Investigation into the effect of a named factor on the rate of dehydrogenase activity in extracts of chloroplasts.
- Investigation into the effect of a named variable on the rate of respiration of cultures of single-celled organisms.
- Calculate gross primary production and to derive the appropriate units.

Organisms respond to changes in their environments

 Calculate the net productivity of producers or consumers from given data and the efficiency of energy transfers within ecosystems at home in an online format. Students will also review and connect information within topics.

Useful websites:

https://www.freesciencelessons.co.uk/a-level-revisionvideos/a-level-biology/ https://www.physicsandmathstutor.com/biologyrevision/a-level-aqa/ https://tailoredtutors.co.uk/subjects/biology/ https://app.senecalearning.com/dashboard **YouTube Channels:** https://www.youtube.com/@MissEstruchBiology/videos https://www.youtube.com/@MrPollockBiology/videos https://www.youtube.com/@AlevelBiologyHelp

Reading list:

Biodiversity: A Beginner's Guide John Spicer Oneworld Publications, 2006.

The Diversity of Life (Revised edition) Edward O. Wilson Penguin, 2001.

Ever Since Darwin: Reflections in Natural History Stephen Jay Gould W.W. Norton and Co., 1992.

Commitment, Opportunity, Respect & Excellence for all and in all that we do

nervous

Response to stimuli,

assessment	Students will build on their knowledge and skills	coordination and	Field Guide to Bacteria Betsy Dexter Dyer Cornell
and	about the nervous system and homeostasis from	homeostasis end of	University Press, 2003.
responding	GCSE Biology to learn that:	topic assessment in	
to feedback	A stimulus is a change in the internal or external	the style of exam	Fifth Miracle: The Search for the Origin of Life Paul Davies
lessons)	environment. A receptor detects a stimulus. A	questions	Simon and Schuster, 1998.
	coordinator formulates a suitable response to a		Genome: Autobiography of a Species In 23 Chapters Matt
	stimulus. An effector produces a response.	Written and verbal	Ridley Fourth Estate, 2000
	Receptors are specific to one type of stimulus.	feedback given	
	Nerve cells pass electrical impulses along their	throughout module	The Greatest Show on Earth: The Evidence for Evolution
	length. A nerve impulse is specific to a target cell only	through in-class	Richard Dawkins Black Swan, 2010
	because it releases a chemical messenger directly	activities and	
	onto it, producing a response that is usually rapid,	homework.	How We Live and Why We Die: The Secret Lives of Cells
	short-lived and localised.		Lewis Wolpert Faber and Faber, 2010
	In contrast, mammalian hormones stimulate their		
	target cells via the blood system. They are specific to		On the Origin of Species (Revised edition) Charles Darwin
	the tertiary structure of receptors on their target		OUP, 2008.
	cells and produce responses that are usually slow,		
	long-lasting and widespread.		The Origin of Life J.D. Bernal Weidenfeld and Nicholson,
	Plants control their response using hormone-like		1969
	growth substances.		
			Plant Physiology (Biology: Form and Function) Irene Ridge
	<u>Skills:</u>		Hodder and Stoughton, 1991.
	 Investigation into the effect of an 		
	environmental variable on the movement of		The Rough Guide to Genes and Cloning Jess Buxton
	an animal using a choice chamber.		Rough Guides, 2007.
	 Use values of heart rate (R) and stroke 		
	volume (V) to calculate cardiac output (CO),		The Selfish Gene Richard Dawkins OUP, 2006.
	using the formula		
	Interpret information relating to examples of		Understanding the Human Genome Project. 2nd edition.
	negative and positive feedback.		Palladino, Michael A. Pearson Education, 2005.
	 Production of a dilution series of a glucose 		
	solution and use of colorimetric techniques		Viruses: A Very Short Introduction Dorothy H. Crawford
	to produce a calibration curve with which to		OUP, 2011.

	identify the concentration of glucose in an unknown 'urine' sample.		What Mad Pursuit Francis Crick Penguin, 1990.
34 lessons (including assessment and responding to feedback lessons)	 <u>Genetics, populations, evolution and ecosystems</u> Students will build on their knowledge and skills about genetics and evolution from GCSE Biology to learn that: The theory of evolution underpins modern Biology. All new species arise from an existing species. This results in different species sharing a common ancestry, as represented in phylogenetic classification. Common ancestry can explain the similarities between all living organisms, such as common chemistry (eg all proteins made from the same 20 or so amino acids), physiological pathways (eg anaerobic respiration), cell structure, DNA as the genetic material and a 'universal' genetic code. The individuals of a species share the same genes but (usually) different combinations of alleles of these genes. An individual inherits alleles from their parent or parents. A species exists as one or more populations. There is variation in the phenotypes of organisms in a population, due to genetic and environmental factors. Two forces affect genetic variation in populations: genetic drift and natural selection. Genetic drift can cause changes in allele frequency in small populations. Natural selection occurs when 	Inherited change, populations & evolution and populations in ecosystems end of topic assessment in the style of exam questions Written and verbal feedback given throughout module through in-class activities and homework.	Junk DNA: A Journey through the Dark Matter of the Genome Nessa Carey Icon Books Ltd, 2015 Immune: A journey into the mysterious system that keeps you alive Philipp Dettmer Random House, 2021

alleles that enhance the fitness of the individuals that
carry them rise in frequency. A change in the allele
frequency of a population is evolution.
If a population becomes isolated from other
populations of the same species, there will be no
gene flow between the isolated population and the
others. This may lead to the accumulation of genetic
differences in the isolated population, compared with
the other populations. These differences may
ultimately lead to organisms in the isolated
population becoming unable to breed and produce
fertile offspring with organisms from the other
populations. This reproductive isolation means that a
new species has evolved.
Populations of different species live in communities.
Competition occurs within and between these
populations for the means of survival. Within a single
community, one population is affected by other
populations, the biotic factors, in its environment.
Populations within communities are also affected by,
and in turn affect, the abiotic (physicochemical)
factors in an ecosystem.
<u>Skills:</u>
Investigate genetic ratios using crosses
of Drosophila or Fast Plant®
Use information to represent phenotypic
ratios in monohybrid and dihybrid crosses.
Show understanding of the probability
associated with inheritance.

|--|

genomes and proteomes of organisms. This has many medical and technological applications. Consideration of cellular control mechanisms underpins the content of this section. Students who have studied it should develop an understanding of the ways in which organisms and cells control their activities. This should lead to an appreciation of common ailments resulting from a breakdown of these control mechanisms and the use of DNA technology in the diagnosis and treatment of human		
 diseases. <u>Skills:</u> Evaluate the use of stem cells in treating human disorders. Interpret data provided from investigations into gene expression Evaluate appropriate data for the relative influences of genetic and environmental factors on phenotype. Use gel electrophoresis to produce 'fingerprints' of food dyes. 		